Electrical Safety

- Advances in medical technology have greatly improved health care and decreased morbidity and mortality
- But the increased complexity of these devices and systems has led to 10,000+ device-related patient injuries each year
 - Most are related to improper use due to lack of training or experience
 - The rest can be attributed to device failure

Effects of Electricity on Humans

- Your body is a series of resistors
- It is easy for you to become part of an electrical circuit
- Current flowing through tissue causes 3 main effects:
 - Stimulation of excitable nerve and muscle tissue
 - Resistive heating of tissue
 - Electrochemical burns and tissue damage for DC and very high voltages

It's The Current That Kills!

Electricity Effects

- Threshold of perception
- Tingling sensation due to stimulation of nerve endings in the skin
- Slight warming of skin
- 2-10mA DC
- As low as 0.5mA at 60Hz
- Wet skin <u>lowers</u> this threshold

Electricity Effects (2)

- Let-go current
- Maximum current at which you can "let go"
- Vigorous stimulation of nerves and muscles
- Can cause involuntary muscle contractions or reflex withdrawals
- Occurs at currents as low as 6mA

Electricity Effects (3)

- Respiratory paralysis, pain and fatigue
- 18-22mA
- Causes involuntary contraction of respiratory muscles, leading to asphyxiation
- Long exposure leads to pain and fatigue due to strong muscle contractions and nerve stimulation

Electricity Effects (4)

- Ventricular fibrillation
- 75-400mA
- Disrupts the heart's normal electrical pathways
- Heart rate can skyrocket to 300 beats/min – death occurs within minutes
- Normal sinus rhythm does <u>not</u> return when current is removed (defibrillation required)
- ~1000 deaths per year

Electricity Effects (5)

- Sustained myocardial contraction
- 1-6A
- Entire heart muscle contracts
- And stops beating!
- Sinus rhythm returns when current is removed
- Similar to defibrillation
- No apparent damage to heart tissue after brief exposure

Electricity Effects (6)

- Burns and physical injury
- 10A and higher little is known about the effects at this level
- Burns at current entry points
- Irreversible damage to brain and other nervous tissue
- Strong muscle contractions can detach muscle from bone

Threshold Variability

- Varies by body weight (e.g. fibrillation threshold increases with body weight on animals)
- Varies between men and women:

Let-go Current vs. Frequency

- Minimum (i.e., worst) let-go currents occur at 50-60Hz
- Unfortunate, since this is the most likely frequency we encounter
- Let-go current rises below 10Hz muscles have time to partially relax
- Also rises for higher frequencies above 1kHz

Resistive Model for Tissue

- Resistances in the body are generally small
- Skin adds much larger resistances:
 - Calloused skin \rightarrow 2-3M Ω /cm²
 - Normal skin \rightarrow 20-30K Ω /cm²
 - Moist skin $\rightarrow 500\Omega/\text{cm}^2$
 - Punctured skin \rightarrow 200-300 Ω /cm²
- Notice the typical ECG Lead pathway is only $400-500\Omega$ excluding skin resistance

Macroshock

- A macroshock occurs when current is applied to two points on the surface of the body
- Only a small fraction of the current flows through the heart
- Very large currents needed to produce V-fib
- Entry points are key:
 - Both on the same extremity, the risk of V-fib is small
 - Across two limbs, risk of V-fib is higher

Macroshock Hazards

- The additional protective resistance afforded by the skin is often bypassed:
 - Natural openings
 - Skin incisions or abrasions
 - Electrode gel
 - Electronic thermometers inserted in the mouth or rectum
 - Intravenous catheters containing fluid, which acts as a conductor
- For these reasons, patients in medical care facilities are at a much higher risk of macroshock

Macroshock Hazards (2)

- The other source of macroshock is ungrounded or poorly grounded equipment
- If you are contacting the ground, you are grounded
- Without a good chassis ground, AC voltage during a fault (a short between conductors) can be passed from the equipment to you
- Proper grounding provides a lower resistance path to ground than you do, so the current flows through the green wire to ground (rather than through you!)

Microshock

- When an invasive device (such as a catheter) is placed in direct contact with the heart, a microshock can occur
- With one point of entry at the heart/catheter boundary, the other point can be <u>anywhere</u>
- V-fib can occur at very low currents → 50μA
- For this reason, current safety limits are set at 10µA to prevent this

Electrical Standards

- Several standards have been established for electrical systems used in patient care facilities
- NEC (National Electrical Code) 2006, Article 517
 - Covers all building power supply
 - Requirements vary for general-care, critical-care and wet areas
- NFPA (National Fire Protection Assn) 2005, Article 99
 - Covers electrical equipment for patient diagnostic, therapeutic and monitoring purposes
 - Covers gas, vacuum and environmental systems
 - Also covers high frequency equipment above 100kHz

Electrical Standards (2)

- AAMI (Assn for the Advancement of Medical Instrumentation) ESI-1993
 - Provides chassis and patient lead leakage current limits for DC to 1 kHz; higher limits for 1 kHz to 100 kHz
 - For products sold in the US
- IEC (International Electrotechnical Commission) 2006, standard 60601-1
 - International version of AAMI
 - Widely supported by medical device manufacturers and their associations
 - Also supported by the FDA

Patient's Electrical Environment

- To reduce the possibility (and the effects) of shock hazards, the NEC 2006 standard set <u>maximum potential differences between any two exposed conductive surfaces</u> in the vicinity of a patient:
 - 500mV in general-care areas
 - 40mV in critical-care areas
- Only incidental contact in general-care areas; hence the higher limit
- Patients are intentionally exposed to electric devices in critical-care areas, so the limit is much lower
- Goal is to eliminate microshock potentials
- NEC 2006 also specifies circuit and grounding requirements for each patient bed location
- NEC 2006 also requires <u>emergency power backup</u> systems that activate within 10 seconds

Factors affecting the severity of a shock

- Factors affecting the severity of the shock a person receives:
 - Amount of current flowing through the body
 - Path of the current through the body
 - Length of time the body is in the circuit
 - The voltage of the current
 - The presence of moisture in the environment
- Under dry conditions, human skin is very resistant. Wet skin dramatically drops the body's resistance.
 - Dry Conditions: Current = Volts/Ohms = 120/100,000 = 1 mA (barely perceptible)
 - Wet conditions: Current = Volts/Ohms = 120/1,000 = 120 mA (sufficient to cause ventricular fibrillation)

Factors affecting the severity of a shock (2)

- If the extensor muscles are excited by the shock, the person may be thrown away from the circuit
 - This can result in a fall from elevation that kills a victim even when electrocution does not!
- When muscular contraction caused by stimulation does not allow the victim to free himself from the circuit, even relatively low currents can be extremely dangerous
 - 100 mA for 3 seconds = 900 mA for .03 seconds : in causing fibrillation
- High voltage electrical energy greatly reduces the body's resistance by quickly breaking down human skin. Once the skin is punctured, the lowered resistance results in massive current flow.
 - At 120 volts, Current = Volts/Ohms = 120/500 = 240 mA

General Power Distribution

- Below is a simplified power distribution system
- Fine for most patient care locations

Grounding System

- Very important to keep all "grounds" at the same potential to protect against shock hazards
- This includes grounding all potential current carrying surfaces (windows, sink, etc.)
- Too much current: the fuse or normal breaker in the main panel will blow/trip
- Why not connect ground to neutral?
 - Differential breaker: senses change in current between neutral & hot
 - A separate earth ground provides an added layer of protection under severe fault conditions (if neutral is temporarily disconnected for some reason)

Equipment Design Techniques

- Reliable grounding of equipment
 - Strain relief on power cords
 - 3-prong power plug (with strong encouragement not to bypass it!)
- Leakage current reduction
 - Low leakage power cords
 - Proper layout and insulation to reduce/eliminate capacitance between conductors
 - Good circuit design to reduce leakage current from the circuit itself
- Equipment insulation
- Low voltage operation
 - Battery powered when possible
 - Or use low voltage isolation transformers
 - Less voltage, less possible current!

Equipment Design Techniques (2)

- Electrical Isolation
 - Provides a physical break in the electrical signal between the patient and the equipment:
 - Isolation transformer
 - Optical isolation
 - Capacitively coupled
 - Goal is to isolate <u>current</u>

Electrical Isolation Techniques

Transformer Isolation

Optical Isolation

How Do We Design For Safety?

- Be a pessimist
 - Assume that issues will occur, both in the design and in its usage
- Design failures <u>do</u> happen
 - How does your design respond?
 - Does the device remain safe for the patient and care-giver?
- Misuse will happen
 - Untrained user not understanding how to use the device properly
 - Anticipating how your device may be used (properly or improperly) will allow you to add additional safety measures to keep users safe in the event of a malfunction